
ANALYTIC SOLUTIONS OF SELF-SIMILAR PROBLEMS OF PLANE TURBULENT 
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The initial and main regions of a plane turbulent gas jet of variable composi- 
tion whose equation of state is given in general form are discussed. 

Analytic methods of solving self-similar problems of turbulent jets of imperfect gases 
of constant composition are known [i, 2]. In [3] a numerical method is developed for solving 
the problem of a turbulent mixture of different ideal gases at substantially subsonic veloc- 
ities, with the main attention being paid to the case of gases at the same temperature. 

In the present article the equationof state is given in general form. Exact solutions 
are obtained for certain special cases of flow. The general case of a turbulent mixture of 
different imperfect gases is treated by an approximate analytic method. 

i. We consider the initial (I) and main (II) regions of plane turbulent jets in a co- 
flowing stream (Fig. i). A gas whose parameters have the subscript 0 discharges into a 
medium moving with constant velocity. The distribution of all parameters at the lip of the 
nozzle is uniform. The parameters of the medium are constants with the subscript H. In 
general the gases are imperfect. We make van Driest's assumption that in addition to fluc- 
tuations of velocity, density, and enthalpy, there are fluctuations of the combinations (pu) 
and (pv). Prandtl's theory is used. Terms of molecular transport are neglected. The flow 
is isobaric. 

We consider the initial region first. The origin of coordinates is placed at point A. 
Making the usual assumptions, the equations of continuity, motion, energy, concentration, and 
state for the initial region in dimensionless form are written as follows: 

(~ ~ Z" + 3~' Z" + +bna-~  Z' b3 M 2----~ ~ + b3Z + = O, ( ! )  
1 - - M  

�9 ,, + r , " -  , " -  
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t n~ nZ' J nho 
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t ~ = < O > / P o ,  ~ =  < ~ > ,  H e r e  Z=-( u>--u H)/(uo-uH), ~---- ( h ) / h  o, M=ur,/uo, 
denote differentiation with respect to n, ~ = (~--~2)/b, b-----~i--~2, ep----y/ax, 
constant, and n = lh/17~-~ IJl u = loll u 

Using the boundary conditions 

at ~1 = 1 Z = 1, Z ' =  O, Z"== bZq~i/(M--1), ~ = 1, ~z = 1  

at T I - -O  Z = O ,  Z ' = O ,  T==hn/ho=N , ~ - - 0  

(4) 

and n = i/Pr T. Primes 
a is an empirical 

(5) 

and the integration constants, we determine the inner ~1 altd outer ~ boundaries of the jet. 
The flow in the main region can be considered as the discharge of a gas jet from a long in- 
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Fig. 1. Boundary layer of je t .  

finitely narrow slot at point B into a co-flowing stream of gas of a different composition. 

We divide the jet into small sections Ax. Following [2] we assume that in each section 
Ax the density and the ratio M = UH/U m (the subscript m denotes parameters on the jet axis) 
are constants. We solve the problem for an arbitrary section Ax. 

For substantially subsonic velocities the equations of motion, energy, concentration, 

and state have the form 

8' 
2ZZ'Z" -5 --- Z (Z') z -- nab,#' ZzZ, _ZZb ~_Z z b~M_M = 0, (6) 

# 28 1--M 

Z ' / Z  = nT'/r ,  

Z' /Z --- rt~.' /~, 

(7) 

(8 )  

( 9 )  

and ~= (P>Ipm..Primes denote 

# = ~, (~, =). 

Here Z -- ( < u ) --un)/(um -- un), x = ( < h > -- h.)l(hm -- hH), o~ = < ~z > !~zm, 
differentiation with respect to ~, ~ = ~,/bl, bl =~i. 

The boundary conditions are 

Z=0 at 0=I; Z=I, Z'=0, x=l, ~=I at ~=0, 

In the derivation of Eqs. (6)-(8) the following boundary conditions were used: at q = i, 

Z' = 0, ~ = 0. 

2. We consider the problem for the initial region. We note first that as a result of 
integrating the energy and concentration equations the following relations can be obtained: 

x = (1 - -  N) = - 5  N - -  I (1)  = -5 l ( n ) ,  ~ = F ( ~ ) / F ( 1 ) ,  

0 0 0 

o =#("- '  ':" (z ' /"-2) /",  ~ = - -  (1 - -  a~'u~ (z')~/(.h~ 

We consider a special case which can be solved exactly. 
and consequently 8 = O, we obtain from (ii) 

x ---- (1 - -  N) ~ - 5  N. ( 1 2 )  

Using {12), the equation of state (4) takes the form 

# ----- qO ( ( 1 - -  N) c~ -S N, =) = ~ ( 6 %  AO. (13 )  

S u p p o s e  P r  T = 0 . 5  (n = 2 ) .  I n  t h i s  e a s e  we o b t a i n  f r o m  (3)  

I ] = F ( ( x ) / F ( 1 ) ,  P ( ~ ) =  [CI"/=d~z. (14) 

For low velocities when uo <<ho, 
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Thus, Eqs. (12), (13), and (14) completely determine the profiles T(n), a(~), and ~(n) 

for the initial region at low velocities and for Pr T = 0.5. It should be noted that they 
are valid for an arbitrary equation of state. 

In the equation of motion (i) we change variables from n to a. Using the fact that 

d/d~=clT:ibili2d/da, cI=F (1),  we obtain 

naKr ba~a/2 ( c-----~ i ~  M ) Z " @ 2 c i ~ , / ~  q-- Z +  = O. (15) 

Here primes denote differentiation with respect to ~. 

Thus, the determination of the velocity profile in the case under consideration reduces 
to the integration of Eq. (15) with boundary conditions (5). The integration can be per- 
formed by Galerkin's method [2], for example. 

3. We consider the solution of problem (6)-(10) for the main region. Integrating Eqs. 
(7) and (8) and satisfying boundary conditions (i0), we obtain 

: Z  l /n,  T = Z 1/n. 

S u b s t i t u t i n g  t h e s e  e x p r e s s i o n  i n t o  (9) ,  

( 1 6 )  

=~i(Z  1In, Z l/n) =~(Z).  (17) 

We introduce a dependent variable into the equation of motion (6) by the expression p = Z'(~), 
and take Z as a new independent variable. Here Z"(~) = p'(Z)p(Z). Using (17) we find 
~'(~) = ~'(Z)Z'(~) Since ~ << i, we neglect the third term in Eq. (6). Taking account of 
what has been said, the equation of motion takes the form 

3~p' q- 1.5 ( r 1 6 2  - -  Z -i) ] = 1.5 bY Z z q- 1.5 Mb~ Z/(1 -- M). (18) 

Here pr imes  deno te  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  to  Z. 

Equa t ion  (18) i s  l i n e a r  i n  p 3. I t s  s o l u t i o n  has the  form 
g 

pa = (q § .[ g (Z) exp TdZ) exp (-- T), 
I ( 1 9 )  

Z 

T ( Z ) =  1,5 I(~I~-~--Z-~)dZ=I.51n[~P(Z)IZ] [in the integration use was made of the fact that 

1 

~(i) = 11, g(Z) = 1.5b~Z 2 + 1.5M~ZAI- M), Ca = const. 

Since p = 0 for Z = i, ca = 0.- Using (19) we now find 

Z 

Z' = b,Q(Z), Q (Z) = l .~ (Z)J  , Z '/~ Z -r" dZ} 

Using the fact that Z = I for ~ = 0, we find 

= (z)  dZ. 

1 

Remembering that Z = 0 for n = i, we find 

3 [ / / /  2 -I (Z) dZ. 
= 7 - -  Q 

(20) 

Finally, we have 

Z 0 

n = j Q-I (z) dz/j Q (z) dz. 
1 1 

(21) 
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Equations (16), (17), and (21) completely determine the concentration, enthalpy, den- 
sity, and velocity profiles in a cross section of the jet. The values of Um, hm, ~m, and 
Pm on the jet axis can be found by the method given in [2]. 

4. We consider an approximate analytic solution of problem (1)-(5) in the general case 
when no restrictions are imposed on n = I/PrT, the function ~(~, ~), and tile flow velocity. 

Using the equation of state (4) we calculate the value of the density ~ at the boun- 
daries of the jet: at ~=I~=~(111)=1; at ~=~=~(N, 0)=k �9 We specify the velocity 
profile in the form 

q=~'OI, m) =(1--k)EO], m)+k, (22) 

where E(~, m) is a certain family of functions depending on the parameter m, and E(O, m) = 
O, E(I, m) = i. 

Using (22) and Eqs. (1)-(3) the profiles Z(n), T(n), and ~(n) can be determined for 
each value of the parameter m. The velocity Z(n) is determined from Eq. (I) by the Galerkin 
method [2], whereas the enthalpy ~(h) and the concentration ~(n) are determined from (ii). 

On the other hand, a correspondence can be established between each pair (e, r) 
and the value of the density determined from Eq. (4). It is clear physically that if the 
values of ~ determined from (22) and (4) are close to one another, the profiles found for 
Z(n), T(n), and e(~) will be close to the true profiles. Thus, we arrive at the following 
problem for the parameter m: It is required to determine the value of the parameter m for 

which the function ~(~, m) (22) is close to the function @(T(~), ~(~)) (4), e.g., in the 
sense of the relative error. 

Taking account of the fact that the expressions @(~, m) and ~(~(~), ~(~)) coincide at 
the boundaries where n = i, it can be required, e.g., that they agree also at some internal 
point q = qo. As a particular family of functions E(n, m) we can set E(n, m) = ~m. 

5. We consider some results of the calculations for the initial regio n of a subsonic 
helium jet discharging into air (R = RH/Ro = 0.1382, ~p = CpH/Cpo = 0.1917) for Pr T = 0.5. 

In Fig. 2 the solid curves are the profiles of the concentration ~ and the density ~= (@--k)/ 
(i -- k), k = OH/DO for N = 0.1917 and N = i. The calculations were performed with the equa- 
tions of Sec. 2. The enthalpy profile for these cases is easily obtained from Eq. (12). In 
Fig. 3 the solid curves for N = 0.1917 are the velocity profiles for two ratios of the velo- 
cities of miscible stream M = 0 and M = 0.9. Here the third approximations obtained by the 
Galerkin method are presented. Calculations showed that the difference between the third 
approximation and the next is 0.1% in the cases considered. 

To estimate the accuracy of the approximate solutions this same problem for N = 0.1917 
was solved by the method presented above. The results of the dashed curves in Figs. 2 and 3. 
The value no = 0.325 chosen corresponds to m = 0.3172. It is clear that the agreement of the 
approximate and exact solutions is satisfactory. 
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Fig. 2. Profiles of concen- 
tration ~ and density 3. 
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Fig. 3. Velocity profiles. 
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NOTATION 

x, y, Cartesian coordinates; ~, transformed coordinate; u, v, velocity components; h, 
enthalpy; p, density; a, concentration; Z, relative velocity; T, ~, relative enthalpy; O~ 
relative density; ~. ~. boundaries of jet; 1 , l~, 1 , I , mixing lengths; a, mixing-length u ~ p ~ 
constant; Cp, specific heat at constant pressure; R, gas constant; ci, integration constant. 
The subscript H refers to the outer and 0 to the inner boundary; < >, average value. 

i. 
2. 
3. 
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A FLAT JET IN A GRANULAR BED OF FINITE HEIGHT 

Yu. A. Buevich, N. A. Kolesnikova, and S. M. Ellengorn UDC 532.546.6 

The distribution of gas flows in the vicinity of the jet is discussed and the condi- 
tions of disruption of the static equilibrium of the bed, the formation and growth 
of a cavity, and the jet breakthrough of the bed are investigated qualitatively. 

In the blowing of gas into a granular bed through an opening in its base one can dis- 
tinguish three main modes of spread of the gas jet differing in a qualitative respect [I]. 
At low flow rates ordinary gas filtration occurs without disruption of the continuity of the 
bed. With an increase in the flow rate above some critical value, depending on the physical 
parameters of the particles and the gas, the size of the opening, and the geometry of the bed, 
the initial static equilibrium of the bed is disrupted: Near the orifice of the jet a cavity 
forms with a relatively small number of particles circulating in it, surrounded by granular 
material which is motionless as before~ whose size grows with a further increase in the flow 
rate~ When the flow rate exceeds some new critical value the equilibrium of the bed with 
the cavity also becomes impossible: The jet "breaks through" the bed with the establishment 
of a steady regime of the type studied in [2]. 

The pattern described also reflects the initial stages of development of a fountain 
in spouting beds, discussed in [3, 4], for example. The formation and growth of the cavity 
are analogous to the appearance and development of the "initial channel" in the mode of 
"internal" spouting [5, 6], as well as to the partially fluidized lower part of a granular 
bed in trough and conical apparatus [6-8]. The jet breakthrough of a bed is equivalent to 
this initial channel breaking through the entire bed and to the onset of a true spouting 
mode. In this case the critical values of the flow rate mentioned above correspond to the 
first two critical spouting velocities introduced in [9]. 

The theoretical analysis of the spread of a jet in a granular bed with disruption of the 
continuity of the latter and the analysis of the conditions of interchange of the above- 
indicated modes require the joint solution of two very complicated problems with an unknown 
boundary. First of all, we need to find the distribution of the hydraulic forces acting on 
the stationary granular material in the vicinity of the cavity on the part of the filtering 
gas in it, for which we must solve the filtration problem (nonlinear in the general case) 
on the distribution of gas flows in the bed. In addition, we must study the static equilib- 
rium for a given distribution of hydraulic forces, and the unknown shape of the cavity must, 
in principle, be determined in the course of, such an investigation. A rigorous solution of 
these interconnected problems is scarcely possible at present. Therefore, they are analyzed 
below with a number of simplifying assumptions only for a plane bed unbounded in a horizontal 
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